ORIGINAL PAPER

An efficient and convenient protocol for the synthesis of diaminotriarylmethanes

Jun-Tao Hou · Jian-Wu Gao · Zhan-Hui Zhang

Received: 30 September 2010/Accepted: 4 February 2011/Published online: 1 March 2011 © Springer-Verlag 2011

Abstract A novel and efficient procedure was developed for the preparation of diaminotriarylmethanes through the Baeyer condensation of aromatic aldehydes and N,Ndimethylaniline or N,N-diethylaniline in the presence of niobium chloride under solvent-free conditions. This approach offers several advantages, such as short reaction time, high yields, low cost, and mild reaction conditions.

Keywords Diaminotriarylmethanes · Aldehyde · Baeyer condensation · Niobium chloride · Solvent-free

Introduction

The synthesis of triarylmethanes is an old but still active research area in organic synthesis. The continuing interest in this topic stems from the fact that these compounds play an important role in many fields. Triarylmethanes and their analogues are an important class of synthetic dyes used to colour silk, wool, jute, leather, cotton, and paper. These dyes are renowned for their outstanding intensity of colour, their brilliant shades of red, blue, and green, and low light fastness on many substrates [1]. They have been reported to possess diverse biological properties such as antifungal, antiproliferative, antiviral and cytotoxic, anti-HIV, CNS activity, and phototoxicity toward tumour cells [2–4]. In addition, they have been widely used in analytical fields, for example, detection of hydrogen peroxide in medical diagnostic kits, biotechnology process control, analysis of biological fluids, and waste water treatment [5]. Furthermore, these

J.-T. Hou · J.-W. Gao · Z.-H. Zhang (⊠) The College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050016, China e-mail: zhanhui@126.com compounds have also been employed as precursors in highperformance polymer synthesis, copper corrosion inhibitors, and are used for the preparation of heat-, light-, and pressuresensitive recording materials for high speed photoduplicating and photoimaging devices [6, 7]. Consequently, great efforts have been made to find efficient synthetic methodologies to gain access to such compounds [8-14]. Among the existing methods, the acid-catalysed Baeyer condensation of aromatic aldehydes and N,N-dimethylaniline is one of the most simple and straightforward approaches for the synthesis of diaminotriarylmethanes. A variety of reagents such as *p*-toluenesulfonic acid [15, 16], aniline hydrochloride [6], polymer-supported sulfonic acid [17], montmorillonite K-10 [18, 19], ZrOCl₂·8H₂O [5], and 1-*n*-butylpyridinium chloroaluminate [20] have been employed to accomplish this transformation. However, some of the reported methods have some disadvantages such as a relatively long reaction time [17], low yield [5], a corrosive catalyst [15], and the use of harmful volatile organic solvents [17, 19]. Thus, it is desirable to develop an efficient and convenient method to construct this type of compound.

NbCl₅ was recently discovered to be a useful mild Lewis acid catalyst in a variety of organic transformations, such as Mannich reactions [21], synthesis of bisindolylalkanes [22], 1,1-diacetates [23], 1,5-benzodiazepine derivatives [24], α -aminonitriles [25], and trisubstituted alkenes [26]. In our previous work, this catalyst was developed to promote some organic reactions and exhibited high catalytic activity [27, 28]. As part of our continuing interest in the development of new synthetic methodologies [29–36], we report herein an efficient and simple procedure for the synthesis of diaminotriarylmethanes by Baeyer condensation of aromatic aldehydes and *N*,*N*-dimethylaniline or *N*,*N*-diethylaniline catalysed by NbCl₅ under solvent-free conditions (Scheme 1).

Scheme 1

Results and discussion

Initially, the reaction of *p*-methylbenzaldehyde and *N*,*N*dimethylaniline under solvent-free conditions was considered as a model reaction. A number of catalysts were evaluated using the model reaction. When the reaction was carried out in the presence of solid acid such as Amberlyst-15, heteropoly acids such as tungstophosphoric acid and tungstosilicic acid, Lewis acids such as I_2 , $(NH_4)_2Ce(NO_3)_4$, (NH₄)₂Ce(SO₄)₃·4H₂O, InBr₃, In(OTf)₃, Zr(SO₄)₂, FeCl₃· 6H₂O, and LaNO₃·6H₂O at 120 °C under solvent-free conditions, the isolated yields were only 23-61%. To our delight, under the same conditions the reaction proceeded steadily to provide the target product 3c in high yield using NbCl₅ as a catalyst (Table 1, entry 12). The effect of the amount of catalyst on the yield was investigated. As there was no obvious difference between using 10 and 15 mol% catalyst loading, we inferred that 10 mol% of NbCl₅ was sufficient for this reaction. We also investigated the effect of temperature on this reaction. When the reaction was carried out at 120 °C, the maximum yield was obtained. Control experiments revealed that no reaction occurred in the absence of the catalyst (Table 1, entry 13).

Using the optimized reaction conditions, we studied the efficiency of this protocol for the synthesis of various diaminotriarylmethanes, and the results are summarized in Table 2. In most cases, the reaction proceeded with high efficiency and broad functional group tolerance. The substituents on the aromatic rings of aldehydes played a significant role in the reaction. The presence of an electronwithdrawing group enhanced the product formation as indicated by a shorter reaction time and higher yield. On the contrary, with an electron-donating group on the aromatic rings of aldehydes, the desired product was obtained in lower yield and a longer reaction time was required. ortho-Substituted aromatic aldehydes with steric hindrance suffered from a slower reaction. It is noteworthy that heteroaryl aldehydes, such as thiophene-2-carbaldehyde, picolinaldehyde, and nicotinaldehyde were also cleanly converted to the corresponding diaminotriarylmethanes in high yields (Table 2, entries x-z). The use of N,N-diethylaniline in place of N,N-dimethylaniline also gave similar results as shown in Table 2. However, when an unactivated ketone such as acetophenone was used in this protocol under the optimized conditions, the corresponding product could not be obtained.

To show the merit of this work in comparison with results reported in the literature, we compared our results with ZrOCl₂·8H₂O, polymer-supported sulfonic acid, montmorillonite K-10, and 1-n-butylpyridinium chloroaluminate in the synthesis of 3c. As demonstrated in Table 3, NbCl₅ is an equally or more efficient catalyst for this reaction in terms of yield and reaction rate.

Table 1Optimization of thereaction conditions for theBaever condensation between	Entry	Catalyst	Catalyst loading (mol%)	Temp (°C)	Time (h)	Yield (%)
<i>p</i> -methylbenzaldehyde and <i>N</i> , <i>N</i> -dimethylaniline	1	Amberlyst-15	10	120	2.0	40
	2	H ₃ PO ₄ ·12MoO ₃ ·24H ₂ O	10	120	2.0	47
	3	H ₃ PO ₄ ·12WO ₃ ·xH ₂ O	10	120	2.0	49
	4	I_2	10	120	2.0	50
	5	$(NH_4)_2Ce(NO_3)_4$	10	120	2.0	42
	6	(NH ₄) ₂ Ce(SO ₄) ₃ ·4H ₂ O	10	120	2.0	47
	7	InBr ₃	10	120	2.0	56
	8	In(OTf) ₃	10	120	2.0	61
	9	$Zr(SO_4)_2$	10	120	2.0	23
	10	FeCl ₃ ·6H ₂ O	10	120	2.0	45
	11	LaNO ₃ ·6H ₂ O	10	120	2.0	52
	12	NbCl ₅	10	120	2.0	88
	13	NbCl ₅	0	120	5.0	0
	14	NbCl ₅	5	120	2.0	70
	15	NbCl ₅	15	120	2.0	89
	16	NbCl ₅	10	100	2.0	72
	17	NbCl ₅	10	110	2.0	87
Yields refer to isolated pure product	18	NbCl ₅	10	130	2.0	85

Yields refer to isola product

Table 2 S	ynthesis o	f diaminotriai	ylmethane	derivatives
-----------	------------	----------------	-----------	-------------

Entry	Aldehydes	R	Time (min)	Yield (%) ^a	$R_{ m f}$	m.p. (°C)	
						Found	Reported
a	C ₆ H ₅ CHO	Me	100	90	0.40	93–94	95–96 [<mark>19</mark>]
b	2-Me-C ₆ H ₄ CHO	Me	150	86	0.42	96–97	98–100 [37]
c	4-Me-C ₆ H ₄ CHO	Me	120	88	0.41	97–98	99–100 [<mark>19</mark>]
d	2-MeO-C ₆ H ₄ CHO	Me	150	78	0.36	150-151	151–153 [37]
e	4-MeO-C ₆ H ₄ CHO	Me	120	80	0.30	100-101	102–103 [19]
f	2-HO-4-MeO-C ₆ H ₃ CHO	Me	180	62	0.08	137–139	
g	3-PhO-C ₆ H ₄ CHO	Me	120	85	0.36	139–140	
h	3,4-(OCH ₂ O)-C ₆ H ₃ CHO	Me	120	88	0.29	164–165	162–164 [<mark>38</mark>]
i	4-F-C ₆ H ₄ CHO	Me	60	92	0.48	100-101	99–100 [17]
j	2-HO-4-F-C ₆ H ₃ CHO	Me	60	84	0.12	121-122	
k	2-Cl-C ₆ H ₄ CHO	Me	70	86	0.43	143–144	142–144 [<mark>20</mark>]
I	3-Cl-C ₆ H ₄ CHO	Me	60	91	0.45	108-109	110–111 [<mark>19</mark>]
m	4-Cl-C ₆ H ₄ CHO	Me	60	90	0.44	98-100	97–98 [<mark>19</mark>]
n	2,4-Cl ₂ -C ₆ H ₃ CHO	Me	70	89	0.46	105-106	104–105 [37]
0	2,6-Cl ₂ -C ₆ H ₃ CHO	Me	70	85	0.41	135–136	134–136 [37]
р	2-HO-5-Cl-C ₆ H ₃ CHO	Me	60	83	0.11	153–154	
q	2-Br-C ₆ H ₄ CHO	Me	70	90	0.40	151-152	152–153 [37]
r	3-Br-C ₆ H ₄ CHO	Me	60	92	0.38	113–114	111–112 [17]
s	4-Br-C ₆ H ₄ CHO	Me	60	92	0.40	119–120	117–118 [17]
t	2-NO ₂ -C ₆ H ₄ CHO	Me	60	87	0.24	158-159	159–160 [<mark>19</mark>]
u	3-NO ₂ -C ₆ H ₄ CHO	Me	50	93	0.26	150-152	152–153 [19]
v	4-NO ₂ -C ₆ H ₄ CHO	Me	50	92	0.26	181-182	184–185 [<mark>19</mark>]
w	3-CF ₃ -C ₆ H ₄ CHO	Me	45	95	0.42	122-124	
х	Thiophene-2-carbaldehyde	Me	90	75	0.40	84-85	83-84 [5]
У	Picolinaldehyde	Me	90	76	0.02	171-172	170–172 [38]
Z	Nicotinaldehyde	Me	90	79	0.24	100-101	99–100 [5]
aa	C ₆ H ₅ CHO	Et	120	84	0.66	63–64	64 [39]
ab	4-Me-C ₆ H ₄ CHO	Et	120	82	0.68	Oil	
ac	3-MeO-4-HO-C ₆ H ₃ CHO	Et	200	67	0.24	Oil	
ad	2,4-Cl ₂ -C ₆ H ₃ CHO	Et	60	89	0.77	85-87	
ae	3,4-Cl ₂ -C ₆ H ₃ CHO	Et	75	83	0.64	78-80	
af	2-NO ₂ -C ₆ H ₄ CHO	Et	60	90	0.51	105-106	106–107 [<mark>39</mark>]
ag	3-NO ₂ -C ₆ H ₄ CHO	Et	50	91	0.52	93–94	95 [<mark>39</mark>]
ah	4-NO ₂ -C ₆ H ₄ CHO	Et	50	92	0.53	114–115	113–114 [39]
ai	4-CHO-C ₆ H ₄ CHO	Et	180	65	0.01	Oil	

 $R_{\rm f}$ values were determined by thin-layer chromatography (TLC) using ethyl acetate/n-hexane (1:6)

^a Isolated yields

Table 3 Comparison of our results with previously reported data for synthesis of 3c

Entry	Catalyst	Reaction conditions	Time (h)	Yield (%)	Ref.
1	ZrOCl ₂ ·8H ₂ O	Solvent-free, 120 °C	4.0	65	[5]
2	Polymer-supported sulfonic acid	Solvent-free, 120 °C	8.0	71	[17]
3	Montmorillonite K-10	Solvent-free, 100 °C	18.0	81	[19]
4	1-n-Butylpyridinium chloroaluminate	Solvent-free, 90 °C	2.5	80	[20]
5	NbCl ₅	Solvent-free, 120 °C	2.0	88	This work

Experimental

Melting points were determined on an X-4 apparatus. Analytical TLC was performed on glass plates of silica gel GF_{254} of 0.2-mm thickness. IR spectra were measured on a Shimadzu FTIR-8900 spectrometer. ¹H NMR and ¹³C NMR spectra were recorded with a Bruker DRX-500 spectrometer using TMS as internal standard. Elemental analysis was carried out on a Vario EL III CHNOS elemental analyser. Their values (C, H, and N) were in good agreement with the calculated ones. Commercially available reagents were used without further purification.

Representative procedure for the preparation of diaminotriarylmethane derivatives

A mixture of aldehyde (5 mmol), *N*,*N*-dimethylaniline or *N*,*N*-diethylaniline (15 mmol), and NbCl₅ (0.5 mmol) was heated in an oil bath at 120 °C for the indicated time. The progress of the reaction was monitored by TLC using an ethyl acetate/*n*-hexane (1:5) mixture as eluent. After completion, the reaction mixture was cooled to room temperature and treated with 20 cm³ water. The resulting mixture was extracted with 3×10 cm³ ethyl acetate. The combined organic layer was dried with anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure gave a residue that was purified by chromatography on silica gel (hexane/ethyl acetate) to the give the pure product.

Except for compounds **3f**, **3g**, **3j**, **3p**, **3w**, **3ab–3ae**, and **3ai**, all products are known compounds. The physical and spectroscopic data for all known compounds were found to be identical to those described in the literature.

2-[Bis[4-(dimethylamino)phenyl]methyl]-5-methoxyphenol (**3f**, C₂₄H₂₈N₂O₂)

IR (KBr): $\bar{\nu} = 3,412, 2,924, 2,853, 1,616, 1,567, 1,518, 1,504, 1,086, 1,304, 984, 866 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): <math>\delta = 2.92$ (s, 12H), 3.75 (s, 3H), 4.86 (br s, 1H), 5.35 (s, 1H), 6.39 (d, J = 8.5 Hz, 1H), 6.43 (s, 1H), 6.64–6.73 (m, 5H), 7.01 (d, J = 8.5 Hz, 4H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 40.6, 49.4, 55.3, 102.3, 106.0, 112.9, 123.6, 129.8, 130.8, 149.3, 154.7, 159.5 ppm.$

$4,4'\hbox{-}[(3-Phenoxyphenyl)methylene] bis-$

(N,N-dimethylaniline) (3g, C₂₉H₃₀N₂O)

IR (KBr): $\bar{\nu} = 3,412, 2,887, 2,802, 1,616, 1,589, 1,578, 1,518, 1,481, 1,444, 1,348, 1,225, 1,124, 1,096, 1,066, 983, 949, 874, 809 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): <math>\delta = 2.90$ (s, 12H), 5.34 (s, 1H), 6.66 (d, J = 8.0 Hz, 4H), 6.78 (d, J = 8.0 Hz, 1H), 6.87 (s, 1H), 6.89 (d, J = 7.5 Hz, 1H), 6.95–6.99 (m, 6H), 7.05 (t, J = 7.5 Hz, 1H), 7.20 (t, J = 7.5 Hz, 1H), 7.28 (t, J = 7.5 Hz, 2H)

ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 40.7, 54.9, 112.6, 116.2, 118.5, 120.4, 122.5, 124.5, 129.2, 129.4, 129.6, 129.9, 147.7, 148.9, 156.8, 157.4 ppm.$

2-[Bis[4-(dimethylamino)phenyl]methyl]-5-fluorophenol (**3j**, C₂₃H₂₅FN₂O)

IR (KBr): $\overline{\nu} = 3,420, 2,922, 2,852, 1,616, 1,558, 1,522, 1,437, 1,416, 1,356, 1,304, 1,269, 1,082, 984, 932, 866, 814, 810 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): <math>\delta = 2.92$ (s, 12H), 4.68 (br s, 1H), 5.39 (s, 1H), 6.53 (d, J = 9.0 Hz, 1H), 6.68 (d, J = 8.0 Hz, 4H), 6.74–6.82 (m, 2H), 6.99 (d, J = 8.0 Hz, 4H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 40.6, 49.8, 112.9, 113.7$ (d, ² $J_{\rm FC} = 22.9$ Hz), 116.7 (d, ² $J_{\rm FC} = 23.9$ Hz), 117.1 (d, ³ $J_{\rm FC} = 8.0$ Hz), 129.5, 129.8, 133.3 (d, ³ $J_{\rm FC} = 6.5$ Hz), 149.5, 149.7, 157.2 (d, ¹ $J_{\rm FC} = 235.9$ Hz) ppm.

2-[*Bis*[4-(*dimethylamino*)*phenyl*]*methyl*]-4-*chlorophenol* (**3p**, C₂₃H₂₅ClN₂O)

IR (KBr): $\overline{\nu} = 3,414, 2,923, 2,808, 1,612, 1,558, 1,522, 1,481, 1,445, 1,416, 1,356, 1,304, 1,269, 1,195, 1,114, 1,047, 984, 949, 929, 866, 851, 812, 793 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): <math>\delta = 2.93$ (s, 12H), 4.91 (br s, 1H), 5.37 (s, 1H), 6.69 (d, J = 7.5 Hz, 4H), 6.74 (d, J = 8.0 Hz, 1H), 6.80 (s, 1H), 6.99 (d, J = 7.5 Hz, 4H), 7.08 (d, J = 8.0 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 40.6, 49.8, 112.9, 117.7, 125.4, 127.5, 129.8, 129.9, 133.3, 149.4, 152.5$ ppm.

4,4'-[[3-(Trifluoromethyl)phenyl]methylene]bis-(*N,N-diethylaniline*) (**3w**, C₂₄H₂₅F₃N₂)

IR (KBr): $\bar{\nu} = 3,412, 2,887, 2,810, 1,616, 1,522, 1,485, 1,437, 1,360, 1,327, 1,308, 1,256, 1,231, 1,165, 1,122, 1,074, 984, 949, 910, 897, 816, 793 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): <math>\delta = 2.91$ (s, 12H), 5.41 (s, 1H), 6.66 (d, J = 8.0 Hz, 4H), 6.95 (d, J = 8.0 Hz, 4H), 7.30 (d, J = 7.5 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.40–7.44 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 40.6, 54.8, 112.6, 122.7$ (q, ³ $J_{FC} = 3.6$ Hz), 124.3 (q, ¹ $J_{FC} = 270.1$ Hz), 125.9 (q, ³ $J_{FC} = 3.7$ Hz), 128.4, 129.8, 130.3 (q, ² $J_{FC} = 31.7$ Hz), 131.8, 132.7, 146.5, 149.1 ppm.

4,4'-[(4-Methylphenyl)methylene]bis(N,N-diethylaniline) (**3ab**, C₂₈H₃₆N₂)

IR (KBr): $\overline{\nu} = 3,407, 2,970, 2,868, 2,928, 2,868, 1,682, 1,612, 1,558, 1,514, 1,464, 1,448, 1,396, 1,373, 1,356, 1,265, 1,198, 1,151, 1,094, 1,076, 1,013, 928, 839, 808 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): <math>\delta = 1.12$ (t, J = 7.0 Hz, 12H), 2.30 (s, 3H), 3.30 (q, J = 7.0 Hz, 8H), 5.28 (s, 1H), 6.58 (d, J = 8.5 Hz, 4H), 6.94 (d, J = 8.5 Hz, 4H), 7.03 (d, J = 8.5 Hz, 2H), 7.06 (d, J = 8.5 Hz, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 12.7, 20.9, 44.3, 54.5, 111.6, 128.6, 129.2, 130.0, 131.9, 135.0, 142.7, 146.0 ppm.$

4-[Bis[4-(diethylamino)phenyl]methyl]-2-methoxyphenol (**3ac**, C₂₈H₃₆N₂O₂)

IR (KBr): $\bar{\nu} = 3,392, 2,970, 2,932, 2,870, 1,612, 1,558, 1,514, 1,464, 1,448, 1,396, 1,375, 1,356, 1,265, 1,198, 1,151, 1,124, 1,094, 1,078, 1,034, 1,013, 881, 808 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): <math>\delta = 1.11$ (t, J = 7.5 Hz, 12H), 3.28 (q, J = 7.5 Hz, 8H), 3.73 (s, 3H), 5.25 (s, 1H), 5.56 (br s, 1H), 6.58 (d, J = 8.5 Hz, 4H), 6.58 (d, J = 8.5 Hz, 4H), 6.61 (dd, J = 8.5 Hz, 1H), 6.69 (d, J = 1.5 Hz, 1H), 6.79 (d, J = 8.5 Hz, 1H), 6.94 (d, J = 8.5 Hz, 4H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 12.5, 44.2, 54.5, 55.6, 111.7, 112.0, 113.7, 121.9, 129.8, 131.9, 137.5, 143.5, 145.9, 146.1 ppm.$

4,4'-[(2,4-Dichlorophenyl)methylene]bis-

(N,N-diethylaniline) (**3ad**, C₂₇H₃₂Cl₂N₂)

IR (KBr): $\overline{\nu} = 3,419, 3,092, 2,968, 2,870, 1,611, 1,585, 1,560, 1,518, 1,466, 1,396, 1,354, 1,267, 1,199, 1,126, 1,078, 1,028, 1,013, 953, 862, 843, 814, 800 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): <math>\delta = 1.12$ (t, J = 7.0 Hz, 12H), 3.32 (q, J = 7.0 Hz, 8H), 5.66 (s, 1H), 6.58 (d, J = 8.5 Hz, 4H), 6.88 (d, J = 8.5 Hz, 4H), 6.97 (d, J = 8.0 Hz, 1H), 7.10 (dd, J = 8.0, 2.0 Hz, 1H), 7.34 (d, J = 2.0 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 12.8, 44.4, 51.2, 111.8, 126.7, 129.2, 129.7, 129.8, 130.3, 132.1, 135.1, 142.3, 146.5 ppm.$

4,4'-[(3,4-Dichlorophenyl)methylene]bis-(N,N-diethylaniline) (**3ae**, C₂₇H₃₂Cl₂N₂)

IR (KBr): $\overline{\nu} = 3,420, 2,966, 2,928, 2,868, 1,611, 1,564, 1,518, 1,466, 1,396, 1,375, 1,267, 1,199, 1,154, 1,126, 1,028, 1,013, 953, 908, 862, 843, 814 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): <math>\delta = 1.13$ (t, J = 7.0 Hz, 12H), 3.31 (q, J = 7.0 Hz, 8H), 5.25 (s, 1H), 6.59 (d, J = 8.5 Hz, 4H), 6.90 (d, J = 8.5 Hz, 4H), 6.98 (dd, J = 8.5 Hz, 1H), 7.24 (d, J = 2.0 Hz, 1H), 7.29 (d, J = 8.5 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 12.7, 44.4, 54.3, 111.8, 128.9, 129.6, 129.9, 130.1, 130.3, 131.3, 132.1, 146.4 ppm.$

4-[Bis[4-(diethylamino)phenyl]methyl]benzaldehyde (**3ai**, C₂₈H₃₄N₂O)

IR (KBr): $\bar{\nu} = 3,412, 2,970, 2,929, 1,701, 1,605, 1,589, 1,543, 1,518, 1,464, 1,447, 1,373, 1,356, 1,198, 1,142, 1,067, 1,015, 951, 929, 907, 863, 808 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): <math>\delta = 1.13$ (t, J = 7.0 Hz, 12H), 3.31 (q, J = 7.0 Hz, 8H), 5.38 (s, 1H), 6.59 (d, J = 9.0 Hz, 4H), 6.92 (d, J = 9.0 Hz, 4H), 7.33 (d, J = 8.0 Hz, 2H), 7.76 (d, J = 8.5 Hz, 2H), 9.96 (s, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 12.7, 44.3, 55.3, 111.7, 129.7, 130.1, 130.2, 130.4, 134.4, 146.4, 153.4, 192.1 ppm.$

Acknowledgments We are thankful to the National Natural Science Foundation of China (20872025 and 21072042) and the Nature Science Foundation of Hebei Province (B2008000149) for financial support of this work.

References

- 1. Duxbury DF (1993) Chem Rev 93:381
- Nair V, Thomas S, Mathew SC, Abhilash KG (2006) Tetrahedron 62:6731
- Sanguinet L, Twieg RJ, Wiggers G, Mao GL, Singer KD, Petschek RG (2005) Tetrahedron Lett 46:5121
- Al-Qawasmeh RA, Lee Y, Cao MY, Gu XP, Vassilakos A, Wright JA, Young A (2004) Bioorg Med Chem Lett 14:347
- 5. Jafarpour F, Bardajee GR, Pirelahi H, Oroojpour V, Dehnamaki H, Rahmdel S (2009) Chin J Chem 27:1415
- Guzman-Lucero D, Guzman J, Likhatchev D, Martinez-Palou R (2005) Tetrahedron Lett 46:1119
- 7. Yan SL, Gao ZX, Fang YJ, Cheng YY, Zhou HY, Wang HY (2007) Dyes Pigm 74:572
- 8. Esquivias J, Arrayas RG, Carretero JC (2006) Angew Chem Int Ed 45:629
- 9. Genovese S, Epifano F, Pelucchini C, Curini M (2009) Eur J Org Chem 1132
- 10. Thirupathi P, Kim SS (2010) Eur J Org Chem 1798
- Prakash GKS, Panja C, Shakhmin A, Shah E, Mathew T, Olah GA (2009) J Org Chem 74:8659
- 12. Khera RA, Ullah I, Ahmad R, Riahi A, Hung NTH, Sher M, Villinger A, Fischer C, Langer P (2010) Tetrahedron 66:1643
- Kodomari M, Nagamatsu M, Akaike M, Aoyama T (2008) Tetrahedron Lett 49:2537
- Leng YX, Chen F, Zuo L, Duan WH (2010) Tetrahedron Lett 51:2370
- 15. Pratt EF, Green LQ (1953) J Am Chem Soc 75:275
- Khosropour AR, Esmaeilpoor K, Moradie A (2006) J Iran Chem Soc 3:81
- 17. An LT, Ding FQ, Zou HP (2008) Dyes Pigm 77:478
- 18. Shanmuga P, Varma L (2001) Indian J Chem 40B:1258
- 19. Zhang ZH, Yang F, Li TS, Fu CG (1997) Synth Commun 27:3823
- 20. Paul AM, Khandekar AC, Khadilkar BM (2003) J Chem Res 168
- 21. Wang R, Li BG, Huang TK, Shi L, Lu XX (2007) Tetrahedron Lett 48:2071
- Heravi MM, Nahavandi F, Sadjadi S, Oskooie HA, Tajbakhsh M (2009) Synth Commun 39:3285
- 23. Gao ST, Zhao Y, Li C, Ma JJ, Wang C (2009) Synth Commun 39:2221
- 24. Gao ST, Liu WH, Ma JJ, Wang C, Liang Q (2009) Synth Commun 39:3278
- 25. Majhi A, Kim SS, Kim HS (2008) Appl Organomet Chem 22:466
- Yadav JS, Bhunia DC, Singh VK, Srihari P (2009) Tetrahedron Lett 50:2470
- 27. Hou JT, Liu YH, Zhang ZH (2010) J Heterocycl Chem 47:703
- 28. Hou JT, Gao JW, Zhang ZH (2011) Appl Organomet Chem 25:47
- 29. Liu YH, Liu QS, Zhang ZH (2008) J Mol Catal A Chem 296:42
- 30. Liu YH, Zhang ZH, Li TS (2008) Synthesis 3314
- 31. Liu YH, Liu QS, Zhang ZH (2009) Tetrahedron Lett 50:916
- 32. Liu HY, Yang SH, Gao JW, Zhang ZH (2010) J Comb Chem 12:643
- Zhang ZH, Wang HJ, Ren XQ, Zhang YY (2009) Monatsh Chem 140:1481
- 34. Zhang P, Zhang ZH (2009) Monatsh Chem 140:199
- 35. Wang HJ, Lu J, Zhang ZH (2010) Monatsh Chem 141:1107
- 36. Wang HJ, Zhang XN, Zhang ZH (2010) Monatsh Chem 141:425
- Coghlan MJ, Luly JR, Schkeryantz JM, Wang AX (2000) PCT WO/2000/006137
- Reddy CS, Nagaraj A, Srinivas A, Reddy GP (2009) Indian J Chem 48B:248
- Fox BM, Hepworth JD, Mason D, Sawyer J, Hallas G (1982) J Soc Dyers Colour 98:10